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We revisit the electrodynamics of resonant high-Q interactions in atomic systems with a view to gaining insights
into the design of meta-atoms and hence bulk metamaterials with profoundly different electromagnetic responses.
The relevance of phase coherence and nonlinearity in charged systems is emphasized, as is the need to take care
over defining how one specifies effective boundaries and cavities that ultimately determine light–matter inter-
actions. Radically newmaterial properties become apparent once one designs organized clusters of small numbers
of atoms or meta-atoms for which the usually applied random phase approximation (RPA) does not apply. The
RPA relies on averages in sufficiently large volumes consisting of large numbers of interacting systems, while our
model assumes a small volume with averages in time, i.e., ergodicity. New meaning is given to the concept of
effective and practically useful constitutive parameters, based on this very fundamental point of view, which
is important to metamaterials. © 2013 Chinese Laser Press
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1. INTRODUCTION
Our objective is to tie together several fundamental concepts
that link light–atom interactions, light–nanostructure inter-
actions, and the broader descriptions of electromagnetic
interactions with small antennas and meta-atoms at any fre-
quency. The treatment described here is predominantly
classical in nature and heavily reliant on the consequences of
satisfying Maxwell’s equations during interactions, while rec-
ognizing that all wave–particle interactions ultimately involve
a discrete exchange of energy and momentum. The concept of
quantizing the energy and momentum of electromagnetic
waves interacting with matter led to the correct description
of the radiation spectrum emitted by a blackbody. This primal
understanding of light–matter interactions has lead to tremen-
dous advances in light sources (lasers) and detectors. It is
foundational and guides how we describe interactions involv-
ing both naturally occurring atoms in materials and artificial
or meta-atoms occurring in metamaterials. However, in this
paper, we begin by revisiting the Lorentz model of the inter-
action of an atom with light and its role in the treatment of
transitions between eigenstates and radiative emission, using
a quantummechanical description of interaction. We consider
the concept of a high-Q region containing an atom defining
an electrostatic frequency quite similar to a plasma frequency
and generalize this concept to illustrate the importance of
some kind of cavity, real or virtual, that dictates the electro-
magnetic response. A bulk response is governed by causality
and Kramers–Kronig dispersion relations, but clearly the cor-
relation between component entities plays an overriding role,
leading to descriptions we typically accept to be averaged.

For a single hydrogen atom, the interaction volume can be
defined in various ways. We demonstrate how, regarded as a
cavity with an observed Q, this naturally suggests that cavity

to be a sphere with a radius found to be comparable to its
Bohr or nonradiating radius. The time required to excite a hy-
drogen atom to transparency, i.e., to transition to an excited
state, defines Q but also directly suggests the Maxwellian
interaction mechanism. The observed high gain factor is de-
scribed in terms of a high value of Q resulting from a complex
resonance, which can be explained in terms of the cavity de-
fined by the set of basis functions employed to represent the
incident light. Further, we describe a “triple” resonance that
exists in nature and that can be applied to the development of
structured engineered materials or metamaterials. It is this
analysis that leads to the expectation that the most interesting
and high-impact engineered materials will comprised small
numbers of highly organized and specific meta-atoms.

The interaction of an isolated dipole with light has served to
describe the interaction of light with dipoles in solids and
metamaterials, as well as gases and liquids. However, strong
interactions between neighboring elements can be expected
to require a multipolar rather than dipolar analysis when those
elements are very close together, i.e., separated by distances a
lot less than the wavelength, λ. The dominant response from a
dipole sheet at a point leads to an overall phase retardation
and our acceptance of refractive indices greater than unity.
Exploiting a more complex individual response without large-
scale averaging can result in phase advances, but this has
proved easier said than done in practice. The major difference
between atoms in a real material and meta-atoms in a meta-
material is that in the former there are clearly many more
atoms per unit of wavelength or per interaction volume than
there can be or needs to be for a practical metamaterial.
Historically, for real materials, an averaged response to
an electromagnetic field has proved to be a reasonable
assumption to make. This is referred to as the random phase

R. Tsu and M. A. Fiddy Vol. 1, No. 2 / August 2013 / Photon. Res. 77

2327-9125/13/020077-11 © 2013 Chinese Laser Press

http://dx.doi.org/10.1364/PRJ.1.000077


approximation (RPA), which is credited with giving meaning
to constitutive parameters such a material’s permittivity or
permeability [1]. This approximation is not necessary or nec-
essarily appropriate for metamaterials.

Coupling effects between neighboring elements in a meta-
material are the key to unusual bulk metamaterial properties,
but they are also well known to be difficult to model, being a
many-body problem and making homogenization estimation
of constitutive parameters difficult. Employing more densely
packed subwavelength-scale meta-atoms is attractive for en-
gineering larger electromagnetic responses, but this benefit
will diminish if it is associated with increasing relative fabri-
cation errors in the meta-atoms’ critical dimensions, making
the RPA reasonable once more.

Let us consider an electromagnetic wave interacting with
any confined system containing charges. In treating an inter-
face between two piecewise analytic regions, we are required
to match wave functions and their derivatives at the interface,
thereby creating reflections and leading to confinement. We
are accustomed to doing this at the macroscopic level when
dealing with many atoms, but the concept remains valid
down to the realm of a single atom. This intrinsic boundary
between regions provides trapping with high Q [2] in atoms,
which we note is also entirely consistent with the properties of
very small (≪λ) antennas [3]. Moreover, while we stress that
waves, unlike particles, do not have potentials, this in no way
precludes an incident electromagnetic plane wave from being
strongly localized. This is appreciated if one considers a rep-
resentation of a plane wave in terms of spherical Bessel func-
tions of the second kind. Coupling between the interaction
volume and these modes of the incident wave is inevitable.
In what follows, we shall use the results derived from a simple
Lorentz oscillator model as a basis for how to develop boun-
dary conditions and describe the light-system interaction. We
recall the prediction of electronic band structures, in which
we start with the atomic wave functions [4]. The Wigner–Seitz
cell connects the points in the reciprocal space to generate a
boundary surface for dividing the space into analytic regions
for boundary conditions. Traditionally, trapping occurs within
a volume of interaction such as a Fabry–Perot resonator for
plane waves. If we consider a single atom (or meta-atom), a
spherical volume with some radius defines the volume of
interaction. Thus our spherical interaction volume or cavity
similarly serves to define boundary conditions.

2. ELEMENTARY LIGHT–MATTER
INTERACTIONS
Let us first consider a single atom. Because light is a wave and
an atom is a particle, it has proven convenient to represent
light as photons because the exchange of energy and momen-
tum is then treated in quantummechanics with units of ℏω and
ℏk. In reality atoms and electrons are spatially localized by
their interaction potentials, which have singularities, but,
without interaction, light as a wave cannot be localized. No
position operator exists for a photon, and the most precise
localization appears to be in the form of wavefronts [1], while
interaction cross sections loosely relate to wavelength. There
is no need to assume that a field of quantized photons exists
a priori in the absence of matter or in the absence of an
interaction in general. To explain observed light–matter phe-
nomena, E � ℏω is better regarded as a property of matter

rather than of light. Put differently, electromagnetic waves
do not interfere with each other in the absence of entities with
mass. It therefore follows that a quantized state for light is

not necessarily an objective property of light, but rather a

statement about our knowledge of how light interacts with

matter.

Adopting this somewhat less fashionable view provides
some important insights. The observed exchanges of electro-
magnetic energy between particles (atoms) appear to be in
discrete units or quanta, but this is because of the nature
of wave–particle interactions. Well away from resonance,
there is still interaction, but it is weak, while closer to reso-
nance the interaction is strong. Trapping and storing of light in
a subwavelength-sized resonant volume is interpreted to be in
the form of nonpropagating or evanescent waves resulting
from resonant interactions, behaving electrostatically. Also
important is the fact that these interactions take a relatively
long time to occur, as the energy associated with the incident
periodic electromagnetic field couples more or less strongly
with the particle, depending on its frequency. Atomic transi-
tions and the photoelectric effect are observed to have re-
sponse times that are relatively long. They range from a few
nanoseconds to much longer for a Rydberg atom, for example.
Excitation of an electron to a higher-energy eigenstate takes
time and many cycles of the incident electromagnetic wave.
Appreciating the dynamics and physical limitations of this
process is especially important for meta-atoms and the design
of metamaterials and determining whether there is a net
coherent or a net averaged response from an assembly of
these elements.

We therefore draw the very close parallel between the
electromagnetic response of real atoms and meta-atoms
and can proceed to do so at all size scales without the need
to invoke the concept of a photon. Individual unit responses
result from either opportunistic or deliberate excitation by an
electromagnetic field, which may or may not be close to a
(cavity) resonance. Coupling between different resonant
states is easier to understand when a sufficiently broadband
electromagnetic field is present. This is not necessary, how-
ever, since losses and nonlinearities play a role. For an atomic
system, putting a non-Hermitian term in the Schrödinger equa-
tion represents damping and or nonlinearities. If losses are
high, then it is pointless to describe resonant states and propa-
gation constants, but not for moderate values of Q. With a
non-Hermitian operator, we give up eigenvalues’ being con-
stant for all time, and wave functions belong to two or more
different states, thereby providing a coupling mechanism.

As electromagnetic energy is transferred from the field
to the charges, our concept is that of a light-dipole or light-
multipole quasi-particle, which is assumed to be uncoupled
from other light-dipole quasi-particles [5], but this is not nec-
essarily the case. Thus the overall interaction is governed by
the volume density of the dipoles (or multipoles) present, but
are the dynamics suggesting a correlated or uncorrelated re-
sponse? There is an equivalence of events in a single cycle
over a large volume and events in a very small volume but
spread over a long period of time. Therefore, the main contri-
bution to the electromagnetic response of bulk materials
and metamaterials is determined by the volume density of
interacting particles. We argue here that this concept of the
volume density of interacting particles is applicable down
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to a single atom or meta-atom in its interaction volume and
that for smaller clusters of entities we can replace the RPA
by statistics.

3. EXCITATION OF AN ATOM BY AN
INCIDENT ELECTROMAGNETIC WAVE
Trapping of light in a cavity such as a Fabry–Perot resonator
results in static oscillations between the cavity walls. In a
spherical cavity, the trapping between r � 0, the origin,
and r � a defines the resonator. The cavity may be repre-
sented by an infinity at r � 0, requiring the wave to be zero
there to avoid a singularity. For a single atom, trapping can be
represented by a spherical cavity between r � 0 and some
r � a0. We can decompose an incident plane wave into a
weighted sum of spherical harmonic functions; i.e., we can
write a linearly polarized component of the electric field as

E�x� � E0 exp�ikx� �
Xm�∞

m�−∞
imJm�kr� exp�imφ�: (1)

These spherical harmonics carry angular momentum, and the
higher-order m modes have a radial component of the field
and carry exponentially less energy at the point of expansion
for increasing m. Thus the interaction with the H atom is pri-
marily with the first- or second-order modes, the first-order
mode having spherical symmetry, as shown in Fig. 1(a), while
the m � 4 and 12 modes are shown in Figs. 1(b) and 1(c).

Exponential decay of high-m modes at the center is the re-
sult of conservation of angular momentum, where m � kθr,
and kθ is the tangential component of the wave vector and
r is the distance from the origin or location of the atom. Thus
we can write that kθ ∝ 1∕r. Given the dispersion relation

k2θ � k2r � ε
ω2

c2
; (2)

then when the tangential wave vector increases toward r � 0,
it follows that kr has to eventually vanish. This defines a boun-
dary for the interaction, as can be more clearly seen for larger
m as in Fig. 1(c). Beyond this radius the incident wave will be
reflected back, but inside this radius, the angular momentum
states are evanescent. The point at which kr ∼ 0 occurs at a
radius r ∼m, usingm � kθr. One can interpret each harmonic
function associated with the incident wave as efficiently
interacting with electron wave functions that have similar

symmetries and hence maximum overlap. The m � 2 spheri-
cal harmonic maps well onto a p orbital.

4. LORENTZ FORCE
The electromagnetic response of an atom or meta-atom is thus
a function of the effective boundary conditions defining the
“box” in which free or bound electrons are confined. The
motion of these electrons, both near and far from resonance,
can be described more carefully than by simply adopting a
Drude-like model [6]. The Lorentz force on the electrons as-
sociated with the illumination cannot be ignored and alters
their quiescent states. The model can change from

dv∕dt� γv � −
e

m
E (3)

to

dv∕dt� �∇ ·∇�v� γv � −
e

m
�E� v × B� − β2∇ · n; (4)

leading to D � ε0E� Pf � Pc, denoting contributions to the
polarization from both free and core electrons. We assume
that electrons are confined in a cavity or potential well, as de-
scribed in the previous section. In more complex systems,
such as atoms, there will be deviations from the Coulomb
law we describe by shielding, which neglects the possibility
of energy transfer between atomic electrons. There is an un-
certainty associated with the time of transfer of energy in
these systems, especially if a loss mechanism is present. This
is another argument why one should be cautious about the use
of the word “photon,” since this implies a more definite type of
particle nature than is really possessed by electromagnetic en-
ergy [7]. We also note that increased confinement in physically
smaller structures restricts motion, which further necessitates
that the role of electron–electron interactions be included.

5. BOUNDARY CONDITIONS
Strictly speaking, particles all have potentials having an r−1

singularity, but waves do not. In treating an interface between
two piecewise analytic regions, we match wave functions and
their derivatives at the interface, leading to reflections and
confinement. We are accustomed to doing this at the macro-
scopic level when dealing with many atoms, but we argue here
that the concept remains valid down to the realm of a single
atom. Not all boundaries are smooth, and specifying boundary

Fig. 1. (a) m � 1 spherical harmonic, (b) m � 4, and (c) m � 12.
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conditions without assuming RPA, for example between two
media with different periodicities, requires a scattering matrix
treatment, (e.g., [8]). Nevertheless, an effective boundary
between regions can provide trapping with high Q [2], which
we will see is consistent with the extensive studies of very
small (≪λ) antennas [3], thereby suggesting a natural and
instructive Maxwellian equivalence between the two. Nothing
precludes an incident electromagnetic plane wave from being
strongly localized, and coupling between the interaction
volume and these modes of the incident wave is inevitable.

In what follows, we use the results derived from a simple
Lorentz oscillator model as a basis for how to develop boun-
dary conditions. We need to consider how to specify boundary
conditions between separated regions without using the
classifications defined by constitutive equations, such as
dielectric functions ε1 and ε2. The latter are more easily
definable as averaged quantities. One is used to finding solu-
tions to differential equations in piecewise analytic regions
where waves and their derivatives are matched over the
dividing lines separating these two regions. This traditional
approach is applied in classical physics as well as quantum
mechanics. However, at scales small on the dimensions of
a wavelength, boundaries can occur between a local homo-
geneous medium and a potentially nonlocal metamaterial
or photonic crystal [8,9].

6. CLASSICAL VERSUS QUANTIZED FIELD
A physical picture in terms of a modal decomposition or rep-
resentation was given of the coupling between an incident
plane wave and the permitted electron wave functions in
confined volumes, such as an atom, structured potential well,
conducting nanostrip, or meta-atom. This provides insight
as to why some minimum interaction time is inevitable in
order to drive those electrons into a response, possibly a res-
onant response leading to transformation to a higher energy
eigenstate. It is well known that the model of a classical
electromagnetic field is satisfactory in order to describe such
interactions. Electromagnetic field quantization is only re-
quired [10] for Planck’s law, the Compton effect, spontaneous
emission, and electrodynamic level shifts, and all of these can
be subsumed into a loss term added to the Green function [4].
However, Hong et al. [11] have demonstrated that an emitted
wave-packet has energy hν and occupies a finite extent in
space and time. Thus interactions of an electromagnetic field
with electrons in matter lead to observations that can be
interpreted as particle-like simply because of these localized
effects that take place over finite interaction times.

The emission of radiation from an atom (very much smaller
than the wavelength) or meta-atom (i.e., a structure somewhat
smaller than the wavelength) can be compared to that of the
excitation of and reradiation from an antenna. In the near
field, an electrically small antenna, such as a dipole has an
extraordinarily high Q, and extremely large field enhance-
ments (i.e., stored electromagnetic energy) are possible. The
electromagnetic field is derived from a vector potential, and,
under these extreme conditions, the wave vectors of the fields
are nonlinear (Bloembergen [12]). This is evident from a
simple logical argument based on transition times between
eigenstates through to ionization, as a function of incident
field amplitudes versus frequencies.

7. RESONANCE
We start with the classical Lorentz model,

ẍ� γ _x� ω2
0x � −e E∕m (5)

with the dipole moment

P � −Nex � �Ne2∕mϵ0�E∕�ω2
0 − ω2 − iγω�: (6)

It is important to repeat that our main point is to replace N by
a single dipole per unit volume of 4πa3∕3, with a being the
radius to be determined where a response is large. The dielec-
tric function is

ϵ�ω� � 1� �ω2
es�∕�ω2

0 − ω2 − iγω�. (7)

Here, ωes is usually expressed in terms of the plasma fre-
quency ωp, with the number density determined, for example,
by the density of electrons in a medium, which is given in
terms of the number of atoms per unit volume in a typical
solid. This description holds well for atoms or meta-atoms.
An incident field of the right frequency will excite the
electron(s)–nucleus system in an atom. These charged ele-
ments represent a plasma-medium in a cavity or meta-atom
structure, just as a single atom (e.g., a dipole) interacting with
an electromagnetic wave defines a volume of interaction.

TheQ for a resonant system in most cases can be expressed
by iωτ, where τ is the lifetime. We note that the engineering
definition of Q, namely 2π× energy stored per unit volume/
energy lost per cycle is only meaningful for Q > 10 [2].
Although this latter definition is not as widely applicable,
the definition in terms of energy stored and energy lost per
cycle is very useful, since it provides an estimate of the energy
stored once the Q and loss per cycle are known. The energy
stored can be expected to induce changes in the cavity char-
acteristics that we label as nonlinear phenomena.

8. HYDROGEN ATOM
Consider the very special case of the 1s − 2p transition of a H
atom. This transition involves ω � 1.55 × 1016 s−1 and the life-
time τ � 1.6 × 10−9 s, giving Q � 2.48 × 107. In other words,
it takes 25 million cycles to build up the spherical interaction
volume’s resonance. The remarkable feature of a single atom
interacting with even very low intensities of background
radiation is that it describes a resonating system with such a
high Q. We argue that this provides insights in devising high-
to-low-Q switchable states for systems in metamaterial
devices. Switching phenomena arising from stored energy
inducing an input–output hysteresis is well documented
through dielectric confinement and nonlinear responses [13]
and phase change mechanisms leading to Rabi-like oscilla-
tions of conductance in quantum dots [4].

In Eq. (7), we equate ω2
es � ω2

0, with ω0 being the transition
frequency of the 1s − 2p levels of the H atom. Intuitively, to
achieve resonance, we need to set the frequency of the inci-
dent light to be equal to the 1s − 2p transition frequency [14].
This is an important point in our discussion here. From
Eq. (7) we obtain the real and imaginary parts of the dielectric
function ϵ1�ω� and ϵ2�ω� shown below:
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ϵ1�ω� � 1� �ω2
es�f�ω2

0 − ω2�∕��ω2
0 − ω2�2 � �γω�2�g; (8a)

ϵ2�ω� � �ω2
es�fγω∕��ω2

0 − ω2�2 � �γω�2�g: (8b)

At ω � 0, ϵ1�0� � 1� ω2
es∕ω2

0, and since this is for resonance,
we set ωes � ω0 � ω, then ϵ1�0� � 2, reaching a value of
ϵ1�ω0 − γ∕2� � 1� ω2

esQ∕2ω2
0 � 1� Q∕2; and ϵ1�ω0� � 1;

ϵ1�ω0 � γ∕2� � 1 − Q∕2 and at ω � ∞, ϵ1 � 1. For ϵ2�ω�, this
function starts at 0, rises to �Q∕2 at ω0 − γ∕2, and ω0 � γ∕2
with a value of Q at resonance, ω � ω0, falling to 0 at ω � ∞.

The Q factor can be further maximized by allowing a varia-
tion of ωes by adjusting the size of the interaction volume. We
can expect some detuning of ωes in practice due to the sus-
tained interaction of the incident electromagnetic field with
the charge(s) in the H-atomic system. The electromagnetic
forces acting on the electron(s)–nucleus system are well
understood from Maxwell’s equations, there being compo-
nents depending on the electric and magnetic multipole mo-
ments, the electric and magnetic fields, and their gradients.
The motion of the bound electrons in their potential well
define a cavity whose structural complexity increases with
additional electrons and higher-frequency incident electro-
magnetic waves.

Once the value of the electric field of spontaneous emission
is determined, the Q factor allows us to determine the value of
the electric field after buildup at steady state. The electric field
strength due to spontaneous emission has been well treated
by Fitzpatrick [15], and what follows represents a few steps
leading to the final conditions resulting from an initial electric
field Ei. Following Fitzpatrick, the value of γ in Eqs. (8a) and
(8b) may be written as

ω2p−1s
spon � ω2p−1s

3d2p−1s
2∕3πϵ0ℏc3 � γ

� �2∕3�8α5�mc2∕ℏ� � 6.3 × 108 s−1 (9)

with α � 1∕137 being the fine structure constant in γ, and the
inverse of γ is the lifetime τ � 1.6 ns, which is used for the
trapping time. Fitzpatrick listed all the dipole matrix elements,
repeated below for convenience:

h100jxj2; 1;�1i � ��27∕35�a0; (10a)

h100jyj2; 1;�1i � i�27∕35�a0; (10b)

h100jzj2; 1; 0i �
���
2

p
�27∕35�a0; (10c)

with the dipole moment d2 � j�10a�2 � �10b�2 � �10c�2je2 �
�215∕310�e2a20, then d � 0.632 × 10−29, and the electric field
E � ℏγ∕d � 1.05 × 104 V∕m.

Therefore, after Q factor buildup, the electric field for the
dipole transition between 1s and 2p is E1s−2p � p

QE �
5.15 × 107 V∕m. This value remains significantly lower than
the static electric field between the nucleus and electron in-
side the atom and supports perturbation-based methods being
used to describe these quantum mechanical transitions; the
Rydberg field is 5.14 × 1011 V∕m.

9. TRIPLE RESONANCE
Traditionally we describe the plasmonic interaction of oscil-
lating electrons with light in terms of summing the individual
dipole moment per unit volume excited by an incident plane
wave. The interaction volume is generally much greater than
the separation of the oscillating dipoles, which, having suffi-
cient collisions, allows us to apply the RPA to the sum, giving
an average dipole moment per unit volume, excited by the in-
cident wave. For a finite interaction volume smaller than the
wavelength, one can better envisage the incident wave as rep-
resented by one or more of the spherical harmonics into
which a plane wave can be expanded. We recognize that the
plasma frequency can be at resonance with the frequency of
the incident wave, but that in any physical situation at a non-
zero (Kelvin) temperature, we should include the background
radiation in our defined space of interaction. Also, as the size
of the interaction volume is reduced, we reduce the number of
dipoles, but as long as the average leading to the RPA is still
operative, the resonance remains unchanged. However, when
we are left with very few, or a single dipole, then we would
take the single dipole per unit volume to describe the plasma
frequency. The interaction volume in this case is determined
by a sphere with an effective radius given by the relationship
of the spherical harmonics of the incident wave to the dy-
namic response of the oscillating electron (if we assume ion-
ization does not occur). We note the need to account for the
nonzero background. This is particularly important when the
excitation is very weak and comparable to the background
when there is dissipation. The unaccounted interaction with
the background is a factor that determines the Q, or the line-
width of this intrinsic broadening. Thus the behavior of a di-
pole antenna is identical to our model for the interaction of a
single atom with light, once one includes the background! In
other words, for the H atom, if the incident electromagnetic
radiation is much stronger than the background, this incident
wave would instantly drive the electron into 1s − 2p transition,
and the interacting system would not have to wait 1.6 ns to
start the Rabi oscillation. The Rabi frequency is proportional
to the strength of the electromagnetic wave.

The term “triple resonance” refers to the fact that the fre-
quency of transition 1s − 2p is the same as that of the incident
light as well as being the same as the plasma frequency used in
the Lorentz model. While the Lorentz model is classical in its
origins, we point out that in any Green functions for waves,
including Schrödinger equations or those for harmonic oscil-
lators, the form is identical to the Lorentz model.

At the resonant frequency, multiple reflections in the cavity
eventually lead to zero reflection and unity transmission. This
matching condition is equivalent to a saturation of absorption
by the atom, and dispersion relations dictate that the sharp
index changes close to the resonant frequency disappear.
After the 1.6 ns buildup time, when the atom becomes trans-
parent, either the persistence of the incident field or some
other perturbation induces the release of the stored energy.
In the initial absence of the atom-cavity’s high Q, the emission
time can be much faster than the buildup time.

The resonant frequencies of a real atom correspond to the
differences between energy eigenstates, but consider a meta-
atom. The electromagnetic response of an isolated meta-atom
can exhibit multiple resonant frequencies determined by its
material properties and shape. Coupling and transitions,
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including Rabi-like oscillations, between these states can
occur in just the same way. Induced current densities are
necessarily finite and can saturate, and the displacement
field may not follow the incident field, leading to perceived
nonlinearities.

We ask how we can make a better source of electromag-
netic waves, such as a laser or another useful device based
on meta-atoms and the relevance of the antenna model. If
we take a single antenna or a single atom, our approach leads
to a similar result. Should we have two or more dipoles, we
would need to consider cross terms, and we should use the
dyadic Green function rather than the RPA.

10. SMALL ANTENNAS
The mechanism responsible for the Q of small antenna is
similar to that determining the Q of the interaction of low-
intensity light with a single atom. This involves a triple reso-
nance, in other words, the frequency of the dipole transition at
resonance with the effective dipole resonance, which is de-
fined by the interaction volume as well as the frequency of
the background radiation. We have shown that our so-called
triple resonance involves the basic assumption of assigning a
value for N in the usual expression for the plasma frequency
ωp, by considering a single dipole per unit volume, and taking
that interaction volume to be that of a sphere whose radius is
adjusted to equate the frequencyωes to be equal to bothω0 and
the frequency of the incident light ω. Mathematically this pro-
cedure produces the maximum trapping, or in other words the
largest Q factor, because the imaginary part of the dielectric
function has a maximum value equal to Q at ω � ω0, etc. We
consider here how our results compare with the Q-factor used
in ultrasmall antennas. Much has been written on the funda-
mental limits on Q for an antenna. While some refinements
have been made over the years, there is broad agreement that
for very relatively small antennas, the maximum Q is well ap-
proximated by QChu � �1∕ka�−3, where the subscript Chu is in
recognition of the first definitive paper on this topic [16,17].
For the H atom transition from 1s to 2p, the transition fre-
quency is 2π × 0.24 × 1016 Hz, which corresponds to a wave-
length of 124 nm. If we adopt the simple Lorentz dispersive
model of Eq. (7), and assume that ωes is the plasma frequency,
Ne2∕ε0m. We assume that for an H atom, N , the number den-
sity of dipoles, is simply one per unit volume and the volume is
4∕3πa3. Equating the plasma frequency to the transition fre-
quency, the value for the radius of the interacting sphere is
a � 0.6 Å. Using this and knowing that k � 2π∕1.215 × 10−5 �
3.1 × 10−3 cm−1, we obtain QChu � 3.4 × 107. Interestingly, our
Q∕QChu � 0.73. Considering the use of widely different con-
cepts for arriving at the value for the Q factor, having only
a 30% difference is a remarkable consequence.

Thus, in summary, using the H atom as an example, we
know that the lifetime (1.6 ns) of the excitation of 1s − 2p
corresponds to a certain Q�� 2.5 × 107� and that for a small
antenna (Chu, [16]) that same Q corresponds to an antenna
circumscribed by a sphere of radius 0.6 Å, almost exactly
the (Bohr) radius of the H atom. We explain this in more detail
in what follows. The H atom is conceptually identical to a
small antenna driven by a large current into large oscillation
almost instantly. Since the ratio of the Q calculated for the
single atom of the H atom is 2.48 × 107, while the Qchu is
3.4 × 107, a factor of 1.36 larger, this may be accountable

by considering the difference in the intensity of the back-
ground frequency of the small antenna, compared to that of
the H atom, indicating that perhaps the background for
microwave frequency is 1.36 times below that of the H atom
being excited in the UV. The difference of 1.36 is in the right
direction but hardly sufficient from blackbody background.
Perhaps something unknown to us is involved.

11. ENERGY TRANSFER AND STORAGE
Energy transfer into this resonant system is governed by the
Poynting vector. The rather complicated description of mo-
mentum transfer requires that one choose a suitable basis
such as the spherical Bessel functions of the second kind,
as previously mentioned, to represent the incident wave. It
is well known that the effective radius of this cavity scales
as n2, the scattering cross section as n4, and the system’s
polarizability as n7, where n here is the principle quantum
number associated with the energy eigenstate involved. These
resonances are excited as a result of a finite energy transfer
into the atom’s plasma medium following some number
(millions) of cycles of the incident field. While being excited,
energy is being given up either by inelastic scattering or non-
radiatively. Energy is also given up radiatively, in units reflect-
ing the energy differences between the energy eigenstates and
coupling, and induced perturbations contribute to the instabil-
ity of each eigenstate. Some are relatively long lived, such as
the H 2s state, but the fact that emission occurs from all ei-
genstates, broadly subject to selection rules, can be explained
by the highly dynamic electromagnetic environment of a real
atom in which all electromagnetic fields interact to some ex-
tent, however weakly. In other words, electromagnetic energy
permeates an atom from its neighbors and other fields.

The Kramers–Kronig relations define refractive index walls
around a resonant frequency, increasingly sharper the higher
the Q of the system. Being a direct consequence of causality,
these relations hold for dynamic and nonlinear behavior,
although full use of these integral transforms might be difficult
to estimate over small bandwidths and near resonances.
These refractive index barriers contribute to the cavity until
the absorption saturates when there is sufficient energy
stored to reach a new eigenstate, at which moment they dis-
appear and the electromagnetic energy is no longer optically
trapped or confined. These interfaces require many cycles of
the incident wave to build up the energy density in the interior,
which is ultimately limited by the loss factor. In addition, we
note that the Kramers–Kronig dispersion relationships as-
sume analyticity, which implicitly requires that all spectral
functions are defined on a continuous variable.

We must realize the meaning of such high Q with reference
to response and sensitivity. Detectors need high sensitivity,
favoring a high-Q system. However, in electronic applications,
a Q over one million is too slow to be of any use at all. An
atomic system is slow compared to a solid-state system,
i.e., slow with respect to processes not under our control,
such as interactions with impurities. One adopts high-Q sys-
tems in parallel to increase response time, and such systems
are very useful for sensing and parametric systems.

We have described how bound electrons in an atom re-
present a spatially confined plasma that interacts with all
electromagnetic fields in its vicinity, but strongly so when
the incident frequency is close to a resonance. At resonance
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the phase relationship is locked. This is equivalent to exciting
a resonant cavity with highly reflecting boundaries but
applies equally to the example of a single atom. Light is slowed
down by the high Q of the atomic cavity as energy is stored.
The Q, and hence the stored energy, as for a dipole antenna,
increases dramatically as the physical size of the antenna de-
creases. It is therefore no surprise that it takes time to store
energy in an atom or meta-atom cavities. The excited electron
is thought of as a quasi-particle that is transformed between
energy eigenstates over time, and the spatial distribution of
energy is well modeled by a quasi-electromagnetic cavity
mode that corresponds to the quantum mechanical construct
of a wave function.

According to Lamb and Scully [10], energy density can
grow, leading to electron emission in a solid (photoelectric
emission) because of the total stored energy. Similarly, for any
simple resonator, such as an atom, a combination of stored
energy and applied (Lorentz) force can result in ionization.
In other words, the 106 field oscillations required to excite
the H atom could be experienced serially or in parallel. Thus,
as pointed out in Section 9, excitation to any excited state (or
ionization) simply requires sufficient total energy in the reso-
nator, since mixing of modes or eigenstates occurs immedi-
ately and the probability of a transition is finite, assuming
the appropriate momentum conservation and a nonperturba-
tive solution.

Energy density and the magnitude of the (distorting)
Lorentz force increase with increasing frequency. In a finite
potential well in which carriers are confined (either H atom
or meta-atom), their motion becomes nonlinear at increas-
ingly high energy densities, leading either to a transition to
a new eigenstate if one exists or to ionization.

A change in eigenstate leads to an abrupt change in the
system’s polarizability and hence interaction with the sur-
rounding field. A consequence of this is emission (stimulated)
and Rabi oscillations, whose frequencies also increase with
increasing electromagnetic wave frequency:

E�r;ω� � E0�r;ω� � iωμ0μr�ω�
Z
V

G
↔
�r; r0;ω�js�r0�d3r0; (11)

and for the dipole

js�r� � iωqδ�r − r0�: (12)

This further reinforces the direct analogy between the Q of an
atom and that for a dipole or multipole based on the Chu limit.
We can generalize this to more complex resonator shapes,
such as heavy atoms and meta-atoms, especially in the near
field. Can we use our description for the interaction of light
with a H-atom as an initial model for designing a better meta-
atom for metamaterials? In an exactly analogous fashion, the
excitation and relaxation time of man-made resonators will be
finite and can be characterized in terms of the effective L, C, R
parameters. These man-made structures can have very high
Qs and can be arranged in proximity to each other with rel-
ative precision, allowing responses governed by coherent
phase-sensitive coupled interactions between them, rather
than an averaged responses described by a RPA.

We have found that the H atom’s transition from 1s to 2p
involves the maximum interaction with incident light when
the dipole moment has an oscillation frequency equal to the

frequency of the incident light and a volume with a radius
∼0.6 Å. For other transitions, this volume will change appro-
priately due to the Lorentz force associated with the incident
electromagnetic wave. We explain and explore these con-
cepts below.

12. ATOMS AND META-ATOMS AS
ANTENNAS AND CAVITIES
A single atom interacts with light having wavelengths many
orders of magnitude larger than the range of interaction.
We have argued that the field enhancement, in terms of Q,
is extremely large and of the order of tens of millions. As
shown above, a plane wave having λ ≫ a, can be expanded
in a series of spherical harmonic functions and a represents
a radius of significant interaction with those basis functions
that turns out to be close to the Bohr radius of the atom. Light
in the form of a plane wave has to be expanded in terms of
Bessel functions of the first and second kind, to allow us to
describe the interaction with a multipole having a singularity
∼1∕r, as with most potentials. As we have seen, the Q of a
correspondingly very small antenna is within 20%–30% of this
high Q for atom–light interaction. It is therefore very likely
that there is a common underlying cause.

From a classical cavity perspective, one can interpret the
transparency post-transition as the interference of the stored
with the incident light, resulting in cancellation of the field at
the interface specified by a. An ideal cavity is almost reflec-
tionless for any high-Q matching network, such as a Fabry–
Perot interferometer, or simply a parallel plate resonator.
The atom-cavity is defined by a physical volume that is deter-
mined by the range of motion of the electron as it gains energy
from the incident field. One can envisage this as a somewhat
stable quasi-particle, which should include nonlinear inter-
actions, in principle. As is well known from a purely electro-
magnetic perspective, certain motions (see [18]) of the
electron, despite its acceleration, will not radiate. Schott
considered the special case of a uniformly charged sphere
of radius a and demonstrated that this sphere will produce
no radiation for a radius a � mcT∕2, where m is an integer.
The period of the oscillation, T , is an integer multiple of the
amount of time it takes for light to cross the sphere’s diameter.
This indicates that the sphere’s range of motion is limited by
relativity to be much less than its diameter or, in other words,
that the sphere’s motion is more of a wobble than an orbit
(see [19]).

These nonradiating states are the bound states of the atom,
which quantum mechanics demonstrates are eigenstates and
perfectly stable should no ongoing excitation occur to perturb
the cavity volume and/or the energy of that otherwise stable
state. The volume is dictated by the efficiency of energy trans-
fer from the incident wave. To a good approximation, given
the relative scale of the wavelength to the atom’s size, the
incident wave is well approximated by a plane wave. Conse-
quently only a portion of the incident electromagnetic field, as
represented by the first one or two terms of its spherical har-
monic expansion, will strongly couple with the H atom. It is
therefore not surprising that many oscillations of the field are
necessary to result in a transition. If the plane wave is viewed
as a mode that is heavily populated with photons, i.e., has high
power, then the excitation time could be reduced. The char-
acteristic response time of ∼1.6 ns for a H atom to transition
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from 1s to 2p assumes low power, and the probability of a
single photon with exactly the correct energy corresponding
to the transition’s energy difference effecting that transition is
extremely low. The amplitude of the harmonic shown in
Fig. 1(a) will dictate the transition rate and Rabi frequency.
The volume of the cavity is determined by the radius at which
higher angular momentum expansion functions representing
the plane wave have a kr that goes to zero. The point at which
kr ∼ 0 occurs at a radius r ∼m, using m � kθr.

13. METAMATERIALS
Almost all metamaterials consist of large numbers of repeated
meta-atoms forming a lattice similar to a superlattice or pho-
tonic crystal, but with a repeat that is much greater than the
atomic dimensions while simultaneously being much less
than λ. Systems with repeated subwavelength scale structures
that are loosely interacting resemble adding many small
antennas [20]. Engineering such media to increase the inter-
actions between elements increases the metamaterial’s
electromagnetic response, while simultaneously diminishing
the role automatically assumed to be at play of the RPA. There
is an opportunity to make a fast low-Q system or one that has a
very narrow bandwidth and the high gain of a high-Q system.
One can consider systems having nonlinearly interacting
components that minimize the problem of nearest neighbors’
losing their relative phase coherence. Such an approach calls
for interactions where parametric interactions can take place,
for example, by adding an idler frequency. This is tantamount
to mimicking a triple resonance.

The simplest meta-atom in a metamaterial is multipole-like
(split-ring resonators, S structures, etc). We think of these as
resonant LCR circuits abstracted into a material shape. Exci-
tation and emission (that is, radiating) is equivalent to the re-
sponse of small antennas, and no RPA is necessary. Even in
traditional lasers, the response is described in terms of rates
because of the RPA. If we consider a mode-locked laser, mode
locking is achieved by insertion of a switch or passive satu-
rable absorber inside the cavity. When that is the case, we
are essentially adding another interaction that we can control.
We tend to think of a meta-atom as a resonant structure but
not as a resonant cavity. However, if we make metamaterials
from meta-atoms comprising natural materials in which
absorption can be saturated or in which phase changes can
occur (e.g., [4]), then a meta-atom can be both a resonant
structure and a resonant cavity and behave like a real atom.
Making a material from two or more such meta-atoms might
allow us to make an artificial lasing source or parametric am-
plifier in which the RPA is not a constraint and rate equations
are replaced by a more powerful phased array concept.

We cite, as an example, the success of the semiconductor
superlattice. This is an active element and involves an applied
dc as well as ac field, resulting in gain for amplifiers and os-
cillators [4]. It would seem only reasonably to expect that
metamaterials could and should also be active and be capable
of having a voltage applied. Several papers demonstrating
tunable and nonlinear metamaterials have been published
[e.g., 21]. However, the performance of engineered structures
such as a conventional superlattice, which are ostensibly peri-
odic structures, is dramatically compromised with even very
small degrees of spatial or material disorder, such as defects
(see, for example, [22]).

This observation makes it necessary to turn one’s attention
to components and devices that have relatively small numbers
of well-defined periods without losing those desired coherent
effects. An example is the coherent superposition of meta-
atom resonant responses that are exploited for large field en-
hancements or large changes in permittivity or permeability.
We have observed that increasing the number of meta-atoms
in order to increase a metamaterial’s volume can be counter-
productive. Random processes associated with fabrication ul-
timately lead to an averaging of desirable properties, which
one can attribute to the central limit theorem or, in condensed
matter physics, attribute to the RPA. It is worth drawing les-
sons learned from technologically sound advances that were
made with a finite array, such as the chirp radar and the Yagi
antenna. Neither are periodic, allowing some very unique fea-
tures to be incorporated into their functions. An analogy for
our purposes would be a practical superlattice comprised of
just a few periods or a small cluster of meta-atoms. This sug-
gests that a meta-molecule may be more practical and effec-
tive as a localized or lumped element than would be a larger
structure with sensitive delocalized properties. The Yagi an-
tenna, by virtue of its outer elements, allows one to design
a beam and gain profile having unique features. The chirp ra-
dar allows pulse compression and has 1∕Δ periods, which are
far from being equal. Even the quantum cascade laser is ba-
sically a generalization of a superlattice in the category of
metamaterials.

14. MAKING NANOSCALE META-ATOMS
The model for free electrons inside metallic structures fails
for metals whose critical dimensions are of the order of a
few nanometers. A modified description should account for
atomic and subatomic interactions, as well as electron–
electron repulsion. The Pauli exclusion states that two elec-
trons cannot occupy the same state at the same time. This
can be represented as a repulsive force between charge car-
riers. In addition to the classical Coulomb force, this quantum
repulsion results in a pressure in an electron gas in response
to an electromagnetic field. This electron pressure is taken
into account by a hydrodynamic description of the collective
motion of the electrons inside a metal [23]. The currents J
inside a metal induced by an electric field E oscillating at
frequency ω can be described by

β2∇�∇ · J� � �ω2 � iγω�J � iωω2
pε0E; (13)

where ε0 is the vacuum permittivity, and γ and ωp are the
damping coefficient and the plasma frequency, respectively,
which also appear in the usual Drude formula,

ε�ω� � 1 − �ω2
p∕�ω2 � iγω��; (14)

and β, which is approximately the speed of sound in the
Fermi-degenerate plasma of conduction electrons, is propor-
tional to the Fermi velocity vF .

The effect of including the pressure term in the electron
response is that the longitudinal dielectric function, εL, be-
comes nonlocal, depending on the propagation vector k in
addition to the frequency, as follows:
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εL�k;ω� � 1 −
ω2
p

ω2 � iγω − β2jkj2 ; (15)

whereas the transverse response is unchanged (see [24]). The
simple picture of a surface charge layer with infinitesimal
extent is replaced with a continuous charge density, whose
extent will be determined by β∕ωp ∼ λTF � vF∕ωp, is the
Thomas–Fermi screening length. Rather than a strict surface
charge density, the nonlocality produces a volume charge den-
sity that spreads out from the surface a distance ∼λTF, which is
of the order of 1 Å.

Either using the Drude model or using Lorentz expressions
for the plasmonic dielectric function is same as using the RPA.
Therefore any interactions, such as electron–electron or elec-
tron lattice interactions, would lead to departure from the
simple Drude model, which should show up as nonlinear
terms. In fact, even the linear term should not be the same
expression as the simple plasmonic frequency. The best
way to understand the trend is to consider all the interacting
terms in terms of a density matrix having all of the off-diagonal
terms. When one diagonalizes the density matrix, one would
find that the new frequency would not be given by the funda-
mental with 2× or 3× or 4×, etc.

15. IMPORTANCE OF PHASE COHERENCE
Having made a clear distinction between waves and particles,
we recognize the fact that waves are represented by second-
order differential equations and are characterized by their
phase and amplitude. In quantum theory there is no direct
physical meaning attributed to complex wave functions de-
scribing the quantum state of a particle, but its magnitude can
be interpreted as a probability density. Making Schrödinger’s
equation invariant to wave-function-phase leads naturally to
vector and scalar quantities that satisfy Maxwell’s equations
given for atomic systems. In describing wave interactions with
matter, we also define a probability density to get rid of the
phase, making the problem more closely related to that for
particles. That step can be done with quantum mechanics or
classical mechanics treatments of wave–particle interactions.
However, once phase is removed, interference is removed;
particles no longer have phase velocity. Our constitutive
equations attributing properties to materials, including
metamaterials, are based on this. In other words, they are rep-
resented by the RPA, namely, in dielectric functions, expan-
sion coefficients, etc., and phase disappears from further
considerations. However, we are advocating here that with
metamaterials we need not do this. The way to introduce
phase in constitutive relationships requires a much more com-
plicated approach based on many-body theory and it is this
very problem that was referred to earlier as homogenization,
namely, reliably extracting constitutive parameters from an
array of coupled meta-atoms.

As long as the RPA is considered an approximation, there
is the possibility of adopting approaches used in the diagonal-
ization of an infinite matrix into blocks, e.g., introducing phase
relationships among the elements within a given block while
eliminating phases among various blocks. Conversely, one
could keep phase relationships among the blocks but use the
RPA for the individual blocks. This last scheme is precisely
what is involved with superlattices, where phase is reintro-
duced among various heterojunctions. To put it in a different

perspective, terminating a tight binding computation of a band
structure achieves some aspect of incorporating a range for
the RPA, such as assuming an energy-dependent collision
frequency.

Our earlier H-atom model involves very high reflectivity, up
to six significant figures approaching unity, in order to pro-
duce trapping of millions of cycles of the light incident onto
the atom. However we observe that typical man-made reso-
nant systems, regarded as LCR circuits, have a Q that might
only reach a few thousand mainly because materials are lossy.
It appears that the type of resonance presented in this work
may be imitated by a system having a resonance that need not
be restricted by material media with high dielectric losses or
transport losses. This suggests the use of configurations with
multipole electrodes as originally expounded by Tsu [25]. The
main concept involves the use of electrodes, which we could
equally well refer to as meta-atoms.

16. NONLINEAR METAMATERIALS AND
THE RPA
We have discussed how all-interacting systems exhibit some
nonlinearities in their response. As a result, the question is
whether one can engineer a metamaterial composed of de-
signed meta-atoms that could exhibit much larger and hence
more useful nonlinear responses than most naturally occur-
ring materials. By suitable design of a meta-atom’s response,
highly nonlinear behavior can be realized. A recent example of
this is to place a diode in the gap of a split-ring resonator. Also,
since a bulk metamaterial is fabricated from large numbers of
these meta-atoms, fabrication tolerances and meta-atom spac-
ings are parameters we can control. This allows short range
co-operative or phase coherent responses to build the overall
number, N , of participating electrons per unit volume. Aver-
aged responses defining the constitutive relations based on
the RPA can be diminished, resulting in properties that are
governed only by the central limit theorem as it applies to
large numbers of the unit volumes, each of which is respon-
sible for coherent responses.

In all cases, the time dependence of the interaction of the
incident (plane) wave with the eigenstates of the atom or
meta-atom, will be causal, and a (short-time) Fourier trans-
form provides real and imaginary parts of the frequency-
dependent constitutive parameters. These real and imaginary
parts evolve with time but are still inevitably dependent on
each other as a result of Cauchy’s integral formula. Close
to resonant frequencies we can predict effective parameter
swings that can be large and physically significant for very
high-Q systems. These Lorentzian responses, dictated by
causality, are consistent with a simple Drude model for a
free-electron response. Lower Q and faster responses lead
to smaller net effects and correspondingly smaller nonlinear-
ities. Increasing disorder of atoms or meta-atoms from what-
ever physical cause leads to lower Q, reduced responses, and
the material properties we have largely come to accept. It was
not until the insight of the superlattice that engineering struc-
tures with local co-operating electron responses paved the
way for improved electronics and, as is now clear, metamate-
rials with nonnaturally occurring electromagnetic responses
[26]. For example, if we are interested in making a parametric
amplifier, then to achieve this, the exciting or pumping field
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has to be able to impose phase coherence on the system, i.e.,
with no RPA [27].

It would seem that efforts should be directed to realizing
material systems with Q > 104−6 range, and these could be
used for detectors and phase modulators. There is another
reason why we should be looking for such Q values. The
mechanisms involved in emissions from even a dipole antenna
are far more involved once near field (<λ) interactions have to
be included. In ordinary quantum mechanics, the interaction
of electrons and photons are introduced via the generalized
momentum operator. Once two systems are coupled, forming
a coupled mode, there ceases to be a start and finish. In other
words, when describing an interaction between A and B,
we may study how A is affected by B and we may ask how
A triggers B. However, with a coupled quasi-particle A–B,
we have to develop a new understanding (e.g., [28]). All inter-
acting particles have a pole-like singularity at their origin, and
any interaction approaching these singularities results in
interactions that are much stronger. This is borne out by the
small-antenna example given above. We are arguing that
reducing Q reduces response times and that this is desirable
for faster next-generation devices. However, the choice of
high Q or low Q depends on applications. For example, sup-
pose we want to use A to trigger B. The trigger must not have
very high Q; otherwise we would suffer a great delay in the
response of our system. Now, if the detectability is very
low, we are forced to utilize high Q, and it is understood that
we are doing so at the expense of response time.

We also recognize that a system does not have to be rep-
resented by a single process and hence a single physical
model. We can augment particular processes by combining
them either in series or in parallel, since we do not want to
rule out multiple components. For example, a superlattice
is nothing but components put together as a single unit con-
sistent with the principle of heterojunctions. Within each indi-
vidual section, the principle of the RPA is applied, while
between the components, phase relationships are kept. This
is how resonant tunneling devices were introduced. While
individual sections are represented by the RPA, phase rela-
tionships are kept between these individual epitaxial layers.
In our view, this opportunity is precisely what metamaterials
offer, and the consequences of avoiding the RPA opens up the
possibility of completely new classes of devices. To rephrase
our major point, for both superlattices and metamaterials, we
can exploit the common practice of having identical systems
operating in parallel.

With regard to metamaterial design, consider nonlinear
interactions. In the usual approach [11] we consider incident
light interacting with an electron or system of electrons in-
cluding those inside an atom via the term p � p − �e∕c�A
where A is the vector potential field in the kinetic energy term
of the Hamiltonian. The arrangement of atoms or meta-atoms
defines the potential energy term of the Hamiltonian. Inter-
actions can be solved by diagonalizing the Hamiltonian, i.e.,
when we have all of the off-diagonal terms equal to zero. How-
ever, diagonalization results in new energy states, and for a
frequency corresponding to Energy � ℏω, we find that ω is
no longer a constant of the interaction, and there are harmon-
ics and subharmonics present. In dealing with extreme
nonlinearities, such as the superlattice potential [26], the com-
puted harmonics are much higher than the values given by use

of constitutive equations. The physical reason for this is that
the high nonlinearity is not based on a perturbed simple har-
monic oscillator potential, but rather on whether one can
drive electrons into regions having higher nonlinear potential.
In fact we use this understanding routinely, for example, by
applying a DC bias, and we do this with terahertz Bloch os-
cillators, microwave amplifiers, or even parametric amplifiers.

17. CONCLUDING REMARKS
Much important and insightful physics depends on a simple
model. We should not be misled into thinking that the Lorentz
model is only classical. If one starts from quantum mechanics,
one would have developed a simple harmonic model, identical
to the Lorentz model. Building on this, traditional models for
dielectric functions, elastic constants, expansion coefficients,
etc., basically utilize RPAs. Nevertheless, our simple model
applies, and it applies remarkably well. In particular we noted
the surprising observation and consistency of the triple reso-
nance. The increase in Rabi frequency toward a resonant tran-
sition frequency leading to Rabi flopping has an analogy for
meta-atoms akin to mode-locking from which higher harmon-
ics can be generated. Our approach is in some respects just
the recognition that the boundary forming the interaction of
the charge response of an atom with light is no more than
defining a volume for the boundary value problem, thereby
defining a cavity which at high energy densities can lead to
even stronger interactions. Under these conditions, a high
Q need not be slow, since a background field sustains the
response and allows extreme changes in permittivity and per-
meability, as dictated by Kramers–Kronig dispersion relations,
to occur near resonant frequencies with minimal losses. The
boundary for an atom was defined by a sphere allowing the
interaction with the series expansion of the incident wave,
and it gives rise to the value of the measured linewidth of
the atomic transitions. The specific line shape of a meta-atom
lends itself to an entirely equivalent analysis.

A molecule, quantum dot, or meta-atom has many electrons
participating. We expect the shape and size of this box to be
important and to determine the resonant frequencies or eigen-
states. For an atom, eigenstates are a function of energy (ℏω)
and momentum (ℏk, i.e., shape). Shape may be more impor-
tant in determining the electromagnetic response for larger
structures containing many carriers, since there are more
degrees of freedom to induce complex magnetic as well as
electronic interactions. This is especially the case at higher
(e.g., optical) frequencies at which magnetic responses are
typically ignored. As for an atom, we might expect an excita-
tion to take time to build up depending on theQ of the box, but
that time will depend on the rate of transfer of energy into the
box. Transitions between eigenstates or modes will again
require sufficiently high frequencies for the interacting
electromagnetic wave for certain eigenstate transitions to
occur, but now momentum states may be more important
because of meta-atom shapes.

For either real or meta-atoms, below their ionization fre-
quency or the required energy density to produce ionization,
electron motion is confined to the cavity or box described
earlier. This confinement must accommodate nonlinearity
with increasing electromagnetic energy densities. The smaller
the box, then the easier it might be to induce a nonlinear
response: hence our hope to be able to design small
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(on the scale of the wavelength) meta-atoms. However, larger
nonlinearities are customarily slower. This is consistent not
with the reduced N (weaker effect) but the correspondingly
larger Q as we approach the Chu limit.

Based on this, we make the following observations with
regard to the design of metamaterials:

1. Meta-atoms need not necessarily be spaced equally,
and might preferably be in a compact almost-periodic system.

2. Meta-atoms may contain switchable features such as
many orders of magnitude change in the conductivity of the
elements due to a phase change, for example, allowing one to
be able to change their functionality by external voltage, light,
or a magnetic field; a phase change such as the 1s − 2p tran-
sition is always ultimately an electronic process.

3. Nonlinearities and diversity of meta-atom shape and
electromagnetic response allow for a completely new class of
materials that are not bound by the restrictions of symmetries
and averaging (RPA) that naturally occurring materials are
subject to.

4. Generally, with the size of individual elements or
meta-atoms are much less than the wavelength of light, but
fabrication realities demand metamaterial designs involving
smaller numbers of elements that need not necessarily be
≪λ, but merely <λ. Chemical as well as dimensional stability
is important for small meta-atoms.

5. Higher-power devices and faster response times typi-
cally call for one to maximize or minimize certain features.
Metamaterials are man-made engineered materials that, as
we understand the underlying wave–metamatter interactions
more deeply, should lead to unlimited design opportunities in
the future.

Developing improved meta-atom shapes, including exploit-
ing symmetries, suggests a simple set of building blocks that
are both general purpose and manufacturable. Research has
been reported over the last couple of years examining the
effects of symmetry and proximity of meta-atoms [e.g., 29]
to better explain overall electromagnetic responses at a fun-
damental level.
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